

Common Domain Model – A Framework for Event Negotiation

Common Domain Model
A FRAMEWORK FOR EVENT NEGOTIATION
CHRIS.RAYNER@ISLAEMEA.ORG

Common Domain Model – A Framework for Event Negotiation Page 2 of 37

1 INTRODUCTION ... 3

2 OVERVIEW ... 4

3 HOW TO MODEL A PROPOSAL ... 6

4 HOW TO ACCEPT A PROPOSAL .. 10

5 HOW TO COUNTER A PROPOSAL .. 11

6 HOW TO REJECT A PROPOSAL ... 13

7 HOW TO TRACK THE WORKFLOW STEPS – LINEAGE .. 14

8 WHO CREATES THE ACTUAL BUSINESS EVENT? .. 15

9 SCENARIO 1 – PROPOSE – ACCEPT ... 16

9.1 STEP 1 – BORROWER CREATES THE INITIAL PROPOSAL ..16
9.2 STEP 2 – LENDER ACCEPTS THE PROPOSAL ...21
9.3 STEP 3 – BORROWER RECEIVES THE BUSINESS EVENT ..22

10 SCENARIO 2 – PROPOSE – REJECT .. 24

10.1 STEP 1 – BORROWER CREATES THE INITIAL PROPOSAL ..24
10.2 STEP 2 – LENDER REJECTS THE PROPOSAL ..24
10.3 STEP 3 – BORROWER RECEIVES THE REJECTED PROPOSAL ...25

11 SCENARIO 3 – PROPOSE – COUNTER – ACCEPT ... 26

11.1 STEP 1 – BORROWER CREATES THE INITIAL PROPOSAL ..26
11.2 STEP 2 – LENDER OFFERS A COUNTER PROPOSAL ..26
11.3 STEP 3 – BORROWER ACCEPTS THE COUNTER PROPOSAL ..29
11.4 STEP 4 – LENDER ACCEPTS THE PROPOSAL ...30
11.5 STEP 5 – BORROWER RECEIVES THE BUSINESS EVENT ..31

12 SCENARIO 4 – PROPOSE – COUNTER – REJECT .. 32

12.1 STEP 1 – BORROWER CREATES THE INITIAL PROPOSAL ..32
12.2 STEP 2 – LENDER OFFERS A COUNTER PROPOSAL ..32
12.3 STEP 3 – BORROWER REJECTS THE COUNTER PROPOSAL ...32
12.4 STEP 4 – LENDER RECEIVES THE REJECTED PROPOSAL ...33

13 BEST PRACTICES FOR BILATERAL TRADE NEGOTIATIONS ... 34

1. NO FURTHER ACTIONS ARE ALLOWED ON A REJECTED PROPOSAL ...34
2. BOTH SIDES NEED TO APPROVE A PROPOSAL ..34
3. SENDING A COUNTER PROPOSAL ...34
4. THE LENDER ALWAYS HAS THE “LAST LOOK” ..34

14 MORE COMPLEX NEGOTIATIONS .. 35

15 SUMMARY .. 37

16 THANKS .. 37

Common Domain Model – A Framework for Event Negotiation Page 3 of 37

1 Introduction

The purpose of this document is to provide a technical overview of how to use the objects
and functions in the CDM to negotiate a new business event. The example we use is the
negotiation of a new trade execution. The document covers four common scenarios found in
real world trade negotiations, providing example JSON (valid for CDM version 4.0.0-dev.4)
for each step of the workflow.

Note that JSON is the native data serialisation format for the CDM which is why we use it in
this document. Other data formats are available and can be used if preferred.

The document is aimed at engineers and developers and is of a technical nature. Having a
basic understanding of the CDM concepts would also be beneficial but is not assumed.

Common Domain Model – A Framework for Event Negotiation Page 4 of 37

2 Overview

The CDM is built upon the concept of workflows. Each workflow can be broken down into a
series of steps. Each step holds the data required to transition a trade from one state to
another.

In this document we explain how one party can propose a new step in a workflow, and
another party (or parties) can accept or reject the proposal. If the proposal is accepted, then
the outcome is a new business event. If the proposal is rejected, then no event is generated,
and the workflow stops at this point.

The example we use is the negotiation of a new securities lending trade; we assume that the
borrower has already identified the need for the trade and determined the lender they wish
to use to source the securities.

The borrower will propose the new trade execution to the lender, sending them the details of
the trade as they see it. The lender can then either accept or reject the proposed trade.

If the lender accepts the proposal, then the trade execution was successful, and the trade can
be created by both the borrower and the lender.

If the lender rejects the proposal, then the trade will not be executed, and no further action
can be performed on this proposal.

The lender is also able to send a counter proposal back to the borrower. This would happen
when the lender is happy to continue with the transaction but wants to change some of the
terms within it. An example of this would be where the lender would like a different rate on
the trade.

When the borrower receives a counter then they can accept it or reject it. If they want to
change some of the terms of the new counter then they can generate another counter
proposal themselves and send that back to the lender.

There is no restriction on the number of counter proposals that can be performed on a
workflow, the workflow only stopping either when all parties accept the proposal or at least
one party has rejected it.

It is also possible for either the lender or the borrower to initiate the trade negotiation. We
use the example of the borrower sending the initial proposal as this is the most common
scenario.

Note that there are many other lifecycle events that this workflow can be used for, the
process and CDM objects are not restricted to negotiating trade executions. Some potential
use cases could be when agreeing prices for mark to markets, updating margins, or
negotiating a change to the terms of an existing trade.

In the following sections we describe how to model four of the most common trade
execution negotiation sequences:

Common Domain Model – A Framework for Event Negotiation Page 5 of 37

• Propose – Accept
This is where one party proposes a new trade and the other party agrees to all the
details and terms on the trade and accepts the proposal.

• Propose – Reject
One party proposes a new trade but the other party does not want to continue with
the transaction at all and rejects the proposal.

• Propose – Counter – Accept
One party proposes the trade, but the other party wants to change some the terms of
the trade and sends back a counter proposal. The initiating party is happy with the
new details and accepts the counter proposal.

• Propose – Counter – Reject
In this scenario one party proposes a trade but the other party offers a counter
proposal. The initiating party is not happy with the counter, however, and no longer
wants to continue with the transaction, sending back a rejection.

Before describing the technical details of each of these scenarios we’ll briefly run through
how to model each potential step in a workflow i.e. how to model a new proposal, and how
to accept, reject or counter that proposal.

We’ll also show how to track the lineage of the workflow, keeping track of each step along
the way.

Detailed descriptions of the CDM objects and functions that are used for each of the
scenarios are provided, with JSON examples too.

Common Domain Model – A Framework for Event Negotiation Page 6 of 37

3 How to model a proposal

The WorkflowStep object allows a lot of detail to be entered. This can be roughly split into
information that describes the workflow step itself (i.e. metadata) and the actual content of
the workflow step (i.e. the data).

Diagram 1: Overview of the top level WorkflowStep object. Only the objects and attributes we will be referencing are
highlighted. Metadata items are shown in blue, whereas objects holding data are shown in green.

In our trade negotiation example, the core data is a new proposed event, which is a trade
execution being proposed by the borrower. The details of the execution are held in
“proposedEvent” which is an instance of the “EventInstruction” object. This should describe
the parties on the trade, the instrument being loaned and the economic terms of the trade.

Common Domain Model – A Framework for Event Negotiation Page 7 of 37

Diagram 2: The “proposedEvent” object is of type EventInstruction. The EventInstruction holds the “instruction” itself,
which can include a “before” image of the trade prior to the event, and a “primitiveInstruction” that holds the data to use
for the event. For our use case we will be using the “execution” primitive instruction, which is of type
ExecutionInstruction.

Diagram 3: The “execution” object is of type ExecutionInstruction, shown here. It is under here that the core details of
the trade execution can be set.

Common Domain Model – A Framework for Event Negotiation Page 8 of 37

As this is a new proposed event, there is no business event as yet, so the “businessEvent”
object will not be included in this workflow step. Similarly, this is the first step in the
workflow for this event, so there will be no previous workflow steps either, so the
“previousWorkflowStep” object will also not be included at this point.

There are two main pieces of metadata required. The first is an identifier for the trade, which
is held under the “eventIdentifier” object, in the “assignedIdentifier -> identifier” attribute.

Diagram 4: The “eventIdentifier” object, which holds “assignedIdentifier” where the trade “identifier” is held.

At this stage the identifier will most likely be an internal reference, as the UTI would not
necessarily be known yet. This id will not change for the duration of the negotiation process,
ensuring all parties can cross reference between all workflow steps associated to this
proposed trade.

For a new proposal like this the “version” attribute under “assignedIdentifier” should be set to
1. The “version” is used to count the number of proposals/counter proposals for this
proposed event. Setting the version to 1 lets all parties know that this is a new proposed
trade execution.

(Note: when a party wants to generate a counter proposal they will increment the “version”
number – please see the following descriptions about how to model a counter proposal for
more detail on the usage of the “version” attribute).

For any trade negotiation to reach a successful conclusion all parties involved must approve
the details of the execution. To allow party approval statuses to be held against a workflow
step the “approval” object can be used.

Common Domain Model – A Framework for Event Negotiation Page 9 of 37

Diagram 5: The “approval” object where party approval statuses are held.

This object allows a list of parties to be included in the workflow step. The parties listed in
this object are expected to approve or reject the proposed event. The “approved” attribute
must be set for each of the parties in the list, and can be set to either True (i.e. approved) or
False (i.e. rejected).

As this is a new proposal being instigated by the borrower, the approval status of the
borrower party can be set to True, as they are proposing the execution details and so have
already pre-approved them. The other party on the negotiation, the lender, will not have seen
this proposal as yet, so the lender party must be included in the list with their approval status
set to False.

Party Approval
Borrower True
Lender False

Table 1: For a new proposal the proposing party (the borrower in this use case) should set their “approval” status to True;
the other party (the lender), who has not seen the proposal yet, should have their status set to False.

A time stamp for the workflow step is required, which should be set to the current date and
time.

Additional details about the transfer of the workflow step between parties can be specified in
the “messageInformation” object. Our example does not rely on these attributes, but they can
be useful when determining the direction and flow of messages between parties.

Common Domain Model – A Framework for Event Negotiation Page 10 of 37

The “rejected” attribute should not be included in the workflow step at this point. It should
only be included when a workflow step is actually being rejected, which is described in more
detail in a later section.

4 How to accept a proposal

Once the lender receives a proposal they can then decide whether they accept the terms of
the trade execution or not.

If the lender decides that the terms are acceptable then they will need to send a message
back to the borrower confirming this. The message will be another WorkflowStep object, but
this time with a “businessEvent” object in it as opposed to a “proposedEvent” object.

The lender is essentially agreeing the terms of the execution as held in the “proposedEvent”
from the workflow step that they received from the borrower. As the terms are acceptable,
the lender will need to send back a WorkflowStep with the same terms as the
“proposedEvent” object they received. This will be in a “businessEvent” object, as both
parties will have now approved the event so it can be executed.

The borrower application can then compare the terms they sent in the “proposedEvent”
against those that they received back in the “businessEvent”; if they match then the borrower
can confirm that the lender has agreed to the terms.

Note that the comparison of the “proposedEvent” and the “businessEvent” is entirely at the
discretion of the application. Where there is a trusted relationship between a borrower and
lender then it would be feasible for the borrower application to skip this validation,
potentially leading to improved processing times. This could be beneficial at peak times
where there is a high volume of trading.

Diagram 6: If the proposal in the “proposedEvent” object is accepted then this will be used to create the “businessEvent”
object that is sent back.

Common Domain Model – A Framework for Event Negotiation Page 11 of 37

The new WorkflowStep must also now include the “previousWorkflowStep” object. The
WorkflowStep object that the lender received holding the proposed trade execution must be
copied into the “previousWorkFlowStep” object. This preserves the lineage of the negotiation
and will allow both the lender and borrower applications to inspect the entire negotiation
process should they need to.

Note that the details from the original “proposedEvent” must not be updated when they are
put into the “previousWorkflowStep”. This is because the JSON that the CDM generates can
contain metadata references. These references allow sections of the JSON to be cross
referenced by other objects, reducing data duplication.

The approval status of the lender party in the new workflow step should now be updated to
True. The approval status of the borrower party should already be set to True; thus the
“approval” object in the new workflow step should now have both the borrower and lender
approval statuses set to True.

Party Approval
Borrower True
Lender True

Table 2: The lender has now approved the execution details; both parties should now have their “approval” status set to
True.

There are functions available in the CDM that can be called to facilitate the creation of this
“accept” workflow step. These are explained in more detail in the following sections.

5 How to counter a proposal

If a lender receives a proposal but does not find the terms acceptable, then they can offer a
counter proposal. A counter would be used when the lender still wants to fulfil the request
but wants to change some of the terms of the trade, for example offering a different rate.

Note that if the lender does not want to continue with the trade negotiation then they should
reply to the borrower with a rejection and not a counter.

The borrower will have sent the lender a WorkflowStep with a “proposedEvent” in it holding
the terms that the borrower would like. The lender will need to take that “proposedEvent”
object, update the terms that they want to change in it, and then put it into a new
WorkflowStep that they will return to the borrower. The borrower application can then
compare the terms they sent against those that they received back, which will highlight the
terms that the lender has changed.

Common Domain Model – A Framework for Event Negotiation Page 12 of 37

Diagram 7: A simplified example showing the borrower proposing a termination date of 13th January but the lender
countering the proposal with a date of 20th January.

In order to make it clear that this is a counter the lender must also increment the “version”
number of this WorkflowStep. This is held under the “eventIdentifier” object, in the
“assignedIdentifier -> identifier” attribute.

For example, the borrower sends out a new proposal but the lender wants to change the rate.
The lender will send back a new WorkflowStep with the same identifier but with the
“version” incremented by 1:

Diagram 8: For a counter proposal the trade identifier does not change but the version number is incremented.

If the borrower is not happy with the new terms in the counter proposal then they too can
offer a counter proposal back to the lender. Once again, the borrower would update the
details in “proposedEvent” and increment the “version” before sending the counter proposal
back to the lender.

Common Domain Model – A Framework for Event Negotiation Page 13 of 37

Diagram 9: Both the lender and the borrower can make counter proposals

Using this process the borrower and the lender can elicit any number of counter proposals,
allowing the negotiation to continue until the terms of the trade are agreeable to both
parties.

Once again the WorkflowStep will need to be copied into the “previousWorkflowStep” object
in order to preserve the lineage of the negotiation.

If a counter proposal is being made then the party that is sending the counter should update
their approval status to True in the “approval” object. The approval status of the other party
in the negotiation must now be set to False, as the other party will not have seen these new
terms.

Party Approval Party Approval
Borrower True Borrower False
Lender False Lender True

Table 3: The proposal by the borrower has been countered by the lender. The “approval” status of the borrower must
now be set to False, as they have not approved the counter proposal yet, and the status of the lender should be set to
True.

6 How to reject a proposal

If the lender receives the execution but no longer wishes to continue with the negotiation
then they can send back a rejection. This can be achieved by setting the “rejected” attribute
to True.

Common Domain Model – A Framework for Event Negotiation Page 14 of 37

Diagram 10: The “rejected” attribute under “WorkflowStep”

The “proposedEvent” that was in the original workflow step should be left as it is. It should
also be put into the “previousWorkflowStep” to preserve lineage.

The approval status for the lender party in the “approval” object should also remain as False.
The approval status for the borrower party, which should currently be True, can remain as it
is, as the lender is now closing the negotiation so approval is not required i.e. this is not a
counter proposal that needs to be approved, this is a termination of the negotiation.

Note that the borrower can also reject a counter proposal from a lender using the same
process. If the terms that the lender proposes in their counter proposal are not acceptable to
the borrower, or the borrower has a different reason for not continuing the negotiation, then
they too can reject the proposal.

There are functions available in the CDM that can be called to facilitate the creation of this
“rejected” workflow step. These are explained in more detail in the following sections.

7 How to track the workflow steps – lineage

During the process of the negotiation each workflow step should be retained for reference
and lineage purposes. This allows each party on the event to have a complete overview of
the negotiation and for applications to make decisions based upon it.

The “previousWorkflowStep” object in the model is used to hold all the workflow steps for a
negotiation. When a workflow step is received by any party then they will need to put that
workflow step into the “previousWorkflowStep” object. This is true whether the party is
accepting, countering or rejecting a workflow step they have received.

Common Domain Model – A Framework for Event Negotiation Page 15 of 37

Note that on a negotiation that has several steps involved then “previousWorkflowStep” will
end up with a tree of several workflow steps defined within it.

Applications should also retain the WorkflowStep objects that are being passed between the
parties. Preserving the objects themselves allows the applications to check that the
previousWorkflowStep objects that they receive in any new workflow step objects do indeed
match the previous objects that they have received previously.

In reality the objects received from other parties on the negotiation should be correct, and
thus should not need to be stored by the applications. However, there is an element of trust
involved in the sending of data between parties, and having the previous objects stored
within the applications will support additional data validation and audit trails if required.

8 Who creates the actual Business Event?

In our negotiation scenarios it should always be the lender who creates the business event.
This is because the lender needs to have the “last look” on the trade as they are providing the
shares as requested by the borrower.

A successful trade execution negotiation process will have been achieved once the lender
party has received an object that accepts the terms of the execution. At this point the lender
application can generate a “businessEvent” object rather than a “proposedEvent” and send
this out to the other parties on the negotiation.

The “businessEvent” marks the end of the negotiation and no further changes can be made to
the trade execution. The trade will be executed by the lender and the borrower and further
lifecycle processing on the trade can continue e.g. settlement.

Common Domain Model – A Framework for Event Negotiation Page 16 of 37

9 Scenario 1 – Propose – Accept

In general trading this should be the most common scenario, as we are expecting that the
borrower and lender will have already completed their preliminary trade checks before
entering into the negotiation process. The overall process can be split into 3 steps, as
expressed in the following diagram:

Diagram 11: Overview of the Propose-Accept workflow

9.1 Step 1 – Borrower creates the initial proposal
To start the negotiation process the borrower will need to create a new “WorkflowStep”
object with the details of the trade execution in the “proposedEvent” object within it. This
can be done using the “Create_ProposedWorkflowStep” function in the CDM.

Common Domain Model – A Framework for Event Negotiation Page 17 of 37

Diagram 12: The inputs and output of the “Create_ProposedWorkflowStep” function as expressed in the Rosetta DSL

The function expects several items as input, which will be used to generate the output, which
will be a new “WorkflowStep” object. For this initial proposal the parameters to the function
should be populated as follows:

messageInformation
Although this optional object is not specifically used in our scenarios it can hold useful
metadata describing the message itself. This data can be useful for applications that receive
these WorkflowStep objects, as they can be used to confirm who sent the object and who
the intended recipient was.

timestamp
This must be included in the object and should be set to the date/time that the workflow
step was generated. Example JSON for this object would be as follows:

"timestamp": [

 {

 "dateTime": "2023-01-11T14:18:49.1016752+01:00",

 "qualification": "EVENT_SENT_DATE_TIME"

 }

]

Diagram 13: Example of a “timestamp” object

Note that this object is a list so that many dates and times can be included. This allows
multiple different date structures or timezones to be included. For more details of the options
available here please refer to the “EventTimestamp” type in the CDM.

eventIdentifier
This mandatory object is used to store a unique reference identifier for the trade execution
that must not change throughout the negotiation process. It also holds the “version” number
that is used when determining whether this is a new proposal or a counter proposal.

The unique identifier for this trade negotiation is put into the “eventIdentifier ->
assignedIdentifier -> identifier” attribute. The “identifierType” attribute associated to the
“identifier” allows the id to be defined as a UTI; however, at this stage of the negotiation this
will not be a UTI, as the trade has not been executed yet, so the “identifierType” attribute
should not be included.

For the initial trade proposal the “eventIdentifier -> assignedIdentifier -> version” number
should be set to “1”. The version number should only be incremented by 1 when the
workflow step holds a counter proposal. For more details on updating the version number
please refer to the “Propose-Counter-Accept” scenario later in this document.

An example of a valid “eventIdentifier” object for a new proposal would be as follows:

Common Domain Model – A Framework for Event Negotiation Page 18 of 37

"eventIdentifier": [

 {

 "assignedIdentifier": [

 {

 "identifier": {

 "value": "1234567890"

 },

 "version": 1

 }

]

 }

]

Diagram 14: Example of an “eventIdentifier” object

The id given to this negotiation workflow is thus “1234567890“. This will not change
throughout the negotiation process of this specific trade execution.

party
The “party” object is optional at this level but it is recommended that the parties on the
negotiation are defined here. These can then be referenced through metadata links further
down in the object tree.

The “party” object can contain multiple parties. In our scenarios we have two parties, the
borrower and the lender, so there must be two parties described in the “party” list. An
example of a “party” object containing two parties is as follows:

"parties": [

 {

 "partyId": [

 {

 "identifier": {

 "value": "549300TVHZO5P05IDJ86"

 },

 "identifierType": "LEI"

 }

]

 },

 {

 "partyId": [

 {

 "identifier": {

 "value": "549300FS4OSSFUCNC234"

 },

 "identifierType": "LEI"

 }

]

 }

]

Diagram 15: Example of a “parties” object with two parties described in it

account
The account is another optional object that could be specified here or elsewhere in the object
tree. In our scenarios the account details are specific to an individual party, not the workflow
step itself, so it is recommended that this object is left empty here.

Common Domain Model – A Framework for Event Negotiation Page 19 of 37

previousWorkflowStep
This object must be empty at this point as this is the first step in the negotiation process i.e.
there have been no previous workflow steps in this negotiation.

action
This attribute is used to describe the status of the event within the workflow step. We are
always describing a new event in each workflow step so this attribute should always be set to
“NEW”.

proposedEvent
This is the core of the initial proposal as it holds the details of the trade execution. Within the
“proposedEvent” object there are currently four items that can be defined, the most
important of which is the “proposedEvent -> instruction”.

The borrower is proposing a new trade execution so the “proposedEvent -> instruction ->
primitiveInstruction -> execution” object should be populated. This holds details of the
collateral, parties, economics and payout terms of the trade. These will differ on a trade-by-
trade basis so the object will not be expanded upon further here.

For more information on how to model a trade execution please refer to the CDM
documentation and the notations in the model itself. Example JSON can also be found in the
Visualisation tool in the Rosetta platform provided by REGnosys.

The “proposedEvent -> intent” should not be specified; we have used the “execution”
instruction which will flag this as a trade execution so an intent is not required.

The “proposedEvent -> eventDate” and “proposedEvent -> effectiveDate” are optional but it
is recommended that they are both populated. For our purposes the event date and the
effective date will be the same and should be set to the current date.

A simplified example of a “proposedEvent” object could be as follows:

"proposedEvent": {

 "effectiveDate": "2023-01-11",

 "eventDate": "2023-01-11",

 "instruction": [

 {

 "primitiveInstruction": {

 "execution": {

 "counterparty": [...],

 "executionDetails": { ... },

 "parties": [...],

 "priceQuantity": [...],

 "product": {

 "contractualProduct": {

 "economicTerms": { ... },

 },

 "tradeDate": { ... },

 "tradeIdentifier": [...]

 }

 }

 }

]

}

Common Domain Model – A Framework for Event Negotiation Page 20 of 37

Diagram 16: A simplified example of a “proposedEvent” object showing the top level attributes that might be specified
within it.

Note that the contents of the “execution” object have been simplified for brevity.

approval
The “approval” object is optional as not all workflows will require a step to be approved.
Approval is an important part of our negotiation though so this object must be present.

The “approval” object holds a list of the parties whose approval of a workflow step is
required. These parties must be defined in the “party” object for the workflow step as they
must be taking part in the negotiation. Associated to each party in the list is an approval
status.

When creating the first step in a new negotiation, the “approval” object must be populated
with entries for each of the parties in the negotiation. In our scenarios we always have two
parties, a borrower and lender, so the borrower will need to create the initial “approval”
object with two items in it, one for themselves and one for the lender.

As the borrower is initiating this proposal they can pre-approve the trade details and set the
approval status for their party to True. However, they must set the approval status to False
for the lender, as the lender has not seen the terms of the execution yet.

The JSON below shows an example of the “approval” object for a new trade execution
between a borrower and a lender:

"approval": [

 {

 "approved": true,

 "party": {

 "partyId": [

 {

 "identifier": {

 "value": "549300TVHZO5P05IDJ86"

 },

 "identifierType": "LEI"

 }

]

 },

 "timestamp": [

 {

 "dateTime": "2023-01-11T14:18:49.1016752+01:00",

 "qualification": "EVENT_SENT_DATE_TIME"

 }

]

 } , {

 "approved": false,

 "party": {

 "partyId": [

 {

 "identifier": {

 "value": "549300FS4OSSFUCNC234"

 },

 "identifierType": "LEI"

 }

]

 },

Common Domain Model – A Framework for Event Negotiation Page 21 of 37

 "timestamp": [

 {

 "dateTime": "2023-01-11T14:18:49.1016752+01:00",

 "qualification": "EVENT_SENT_DATE_TIME"

 }

]

 }

]

Diagram 17: An example of the “approval” object showing the approval status of the two parties on the negotiation.

The borrower – LEI “549300TVHZO5P05IDJ86” – has their approval status set to “true”; the
lender – LEI “549300FS4OSSFUCNC234” – has their approval status set to “false”.

Once the required JSON has been prepared then the “Create_ProposedWorkflowStep”
function can then be called. The result of the function call should be a new “WorkflowStep”
with all the details specified within it. This object is the initial trade execution proposal that
the borrower would then send on to the lender.

If you are using the Rosetta platform you can use the “Functions” bottom menu option to
select the “Create_ProposedWorkflowStep” function and upload the JSON against it for
testing purposes. You can also use the “API Export” bottom menu option and use a tool like
curl to perform the same task through a desktop application.

The CDM is also available as a set of Java jar files and these can be used directly to call the
functions.

Further details on how to setup the CDM for test or implementation purposes is beyond the
scope of this document.

9.2 Step 2 – Lender accepts the proposal
The lender will receive the “WorkflowStep” object created by the borrower. This will hold the
details of the trade execution in the “proposedEvent” object within it.

The lender application will need to check the terms described in the “proposedEvent”, and, if
happy with them, they can commit the trade on their system. They can commit the trade as
the borrower has already pre-approved the execution details by setting their approval status
in the “approval” object to “true”.

The lender application will need to notify the borrower that they have accepted the proposal.
They can do this by generating a new workflow step that holds a “businessEvent” object. This
can be done by using the “Create_AcceptedWorkflowStepFromInstruction” function in the
CDM.

Common Domain Model – A Framework for Event Negotiation Page 22 of 37

Diagram 18: The inputs and output of the “Create_AcceptedWorkflowStepFromInstruction” function as expressed in the
Rosetta DSL

Note that there is another function in the CDM called “Create_AcceptedWorkflowStep”
which has different input requirements to “Create_AcceptedWorkflowStepFromInstruction”.
The advantage of using “Create_AcceptedWorkflowStepFromInstruction” is that it requires
only one input parameter, this being the “WorkflowStep” object that the lender wants to
accept. This makes the acceptance of a workflow step a lot simpler from the implementation
perspective.

The “Create_AcceptedWorkflowStepFromInstruction” performs several tasks for us.

Firstly, it will create a new “WorkflowStep” object with the same “action”,
“messageInformation”, “timestamp” and “eventIdentifier” objects as the original workflow
step that the lender is accepting.

It will also put the original “WorkflowStep” object into the new workflow step’s
“previousWorkflowStep” object, preserving the lineage of the negotiation.

Finally, and most importantly, the function will create a “businessEvent” object (as opposed to
a “proposedEvent” object) using the details passed in the original “WorkflowStep” object. This
is the actual business event and marks the end of the negotiation from the lender’s
perspective.

Diagram 19: Snippet from the “Create_AcceptedWorkflowStepFromInstruction” where the “Create_BusinessEvent”
function is called to create a new businessEvent object based upon the details pass in the proposedEvent object.

The “WorkflowStep” that has thus been created can now be sent back to the borrower as
confirmation that the trade has been accepted.

9.3 Step 3 – Borrower receives the business event
At this stage the borrower will still be waiting for a response back from the lender, confirming
whether they have accepted the terms of the proposal or not. The “WorkflowStep” that they
receive from the lender holds a “businessEvent” object, so they know that the terms were
acceptable and the trade has been executed by the lender.

Common Domain Model – A Framework for Event Negotiation Page 23 of 37

The borrower can now commit the trade on their own system using the details from the
“businessEvent” object in the workflow step that they received.

Common Domain Model – A Framework for Event Negotiation Page 24 of 37

10 Scenario 2 – Propose – Reject

Probably the simplest of the negotiation scenarios, this would be where the lender now does
not want to continue with the trade at all. This could be where they no longer have the
shares for example. The following diagram illustrates the workflow:

Diagram 20: Overview of the Propose-Reject workflow

10.1 Step 1 – Borrower creates the initial proposal
To start the negotiation process the borrower will need to create a new “WorkflowStep”
object with the details of the trade execution in the “proposedEvent” object within it. This
can be done using the “Create_ProposedWorkflowStep” function in the CDM.

The details on how to do this are the same as can be found in the section of the same name
under the “Propose – Accept” scenario.

10.2 Step 2 – Lender rejects the proposal
The lender will receive the “WorkflowStep” object created by the borrower. This will hold the
details of the trade execution in the “proposedEvent” object within it.

The lender application will need to check the terms described in the “proposedEvent”. If they
are not happy with them and do not want to continue with the trade, or no longer want to
continue with the trade for any other reason, then the lender will need to reject the proposal.
In this situation the lender will not commit the trade into their application.

To reject the event the lender application will need to generate a rejected workflow step and
pass this back to the borrower. This can be done by using the
“Create_RejectedWorkflowStep” function in the CDM.

Common Domain Model – A Framework for Event Negotiation Page 25 of 37

Diagram 21: The inputs and output of the “Create_RejectedWorkflowStep” function as expressed in the Rosetta DSL

The “Create_RejectedWorkflowStep” function expects 4 pieces of information, all of which
should be taken directly from the “WorkflowStep” object that the lender is rejecting. These
are the “messageInformation” (if populated), “timestamp”, “eventIdentifier” and the entire
“WorkflowStep” object that is being rejected.

The function will create a new “WorkflowStep” object, setting the “WorkflowStep ->
rejected” attribute to “true”. This will tell the borrower that the lender no longer wishes to
continue the negotiation process for this specific event.

The “WorkflowStep” that has thus been created can now be sent back to the borrower as
notice that the trade has been rejected.

10.3 Step 3 – Borrower receives the rejected proposal
When the borrower receives the new workflow step back from the lender they will see that
the “rejected” attribute is set to “true”. The borrower will know from this setting that the
lender does not wish to continue with the negotiation of this event.

Common Domain Model – A Framework for Event Negotiation Page 26 of 37

11 Scenario 3 – Propose – Counter – Accept

A common situation is where the borrower and the lender will agree the details of the trade
but certain terms (e.g. the interest rate) may need to be further negotiated. This would be
where a counter proposal by the lender would be made, and it would then be up to the
borrower to accept the new rate. The following workflow diagram shows how this could
work:

Diagram 22: Overview of the Propose-Counter-Accept workflow

11.1 Step 1 – Borrower creates the initial proposal
To start the negotiation process the borrower will need to create a new “WorkflowStep”
object with the details of the trade execution in the “proposedEvent” object within it. This
can be done using the “Create_ProposedWorkflowStep” function in the CDM.

The details on how to do this are the same as can be found in the section of the same name
under the “Propose – Accept” scenario.

11.2 Step 2 – Lender offers a counter proposal
The lender will receive the “WorkflowStep” object created by the borrower. This will hold the
details of the trade execution in the “proposedEvent” object within it.

The lender application will need to check the terms described in the “proposedEvent”. In this
scenario the lender wants to negotiate some of the terms further e.g. use a more favourable
rate. To do this the lender will need to create a counter proposal and pass this back to the
borrower for them to check. This will be a new workflow step that holds the terms from the

Common Domain Model – A Framework for Event Negotiation Page 27 of 37

original proposal that the lender is happy with, along with the updated (or new) terms that
they would like to change.

To create a counter proposal the lender application can use the same function that the initial
proposal was generated with, this being the “Create_ProposedWorkflow” function. A few of
the details passed in the input parameters will need to change for a counter proposal, which
will be explained here.

In general the “messageInformation” and “timestamp” should be updated to reflect this new
workflow step. The “party”, “account” and “action” objects should remain the same. The main
objects that the lender would need to change are “eventIdentifier”, “previousWorkflowStep”,
“proposedEvent” and “approval”.

The new workflow step that the lender is building is for the same trade execution, just with
updated terms. Thus the “eventidentifier -> assignedIdentifier -> identifier” attribute should
not be updated. As this is a counter proposal though, the “eventidentifier ->
assignedIdentifier -> version” number should be incremented by 1.

Diagram 23: When countering a proposal the “version” attribute has to be incremented.

In a negotiation where there are multiple counter proposals the “version” could be
incremented many times. In all cases the “identifier” must remain the same though so that
both parties applications can cross reference each workflow step to a specific negotiation.

Unlike the initial proposal, a counter proposal will always have a previous workflow step.
Thus the “WorkflowStep” object that the lender is building a counter proposal for must be
put into the “previousWorkflowStep” of the new workflow step.

Common Domain Model – A Framework for Event Negotiation Page 28 of 37

Diagram 24: The original “WorkflowStep” that is being countered by the lender must be put into the
“previousWorkflowStep” of the new “WorkflowStep” that the lender will send back to the borrower.

The “proposedEvent” is where the updated terms should be placed. The easiest way to
achieve this is for the lender application to use the “proposedEvent” object from the previous
workflow step that they are countering and update/add the terms that they wish to change
within it.

Diagram 25: The “proposedEvent” object in the new “WorkflowStep” should hold the updated terms. In the example
above the borrower proposed a termination date of the 13th but the lender is countering with a date of the 20th.

Finally the “approval” object needs to be updated. When the borrower sent the initial
proposal through they created the “approval” list with items in it for themselves and the
lender, setting their own approval status to “true” but the lender’s status to “false”.

For the counter proposal the reverse is now true i.e. the lender can now pre-approve the
terms of the execution, but the approval status of the borrower must now be reset to “false”,
as the terms have changed and now need to be approved by them again.

Common Domain Model – A Framework for Event Negotiation Page 29 of 37

Diagram 26: The borrower (LEI “549300TVHZO5P05IDJ86”) sent the initial “approval” object through with their status
set to “true” and the lender’s status (LEI “549300FS4OSSFUCNC234”) set to “false”. In the counter proposal the lender
must set their approval status to “true” and the borrower’s approval status to “false”.

Once the required JSON has been prepared then the “Create_ProposedWorkflowStep”
function can be called. The result of the function call should be a new “WorkflowStep” with
the new terms of the trade specified within it. This can then be sent back to the borrower.

11.3 Step 3 – Borrower accepts the counter proposal
When the borrower receives the new workflow step back from the lender they will see that
there is no “businessEvent” in it. From this they can deduce that the terms of the trade were
not accepted by the lender.

The borrower application will also see that the “rejected” attribute has not been set, so they
will know that the lender still wishes to continue with the trade negotiation.

The borrower application can further tell that this is a counter proposal by confirming that
the “identifier” is one that they recognise, and that the “version” number has been
incremented.

The next step is for the borrower application to work out the terms that the lender has
changed. This can be done by comparing the details in “proposedEvent” and
“previousWorkflowStep -> proposedEvent” in the “WorkflowStep” object they received from
the lender (the application can also check the “proposedEvent” against the details that it
holds internally for the original workflow step that it sent out to the lender).

Common Domain Model – A Framework for Event Negotiation Page 30 of 37

Diagram 27: The borrower can locate the updated terms in the counter proposal by comparing the "proposedEvent" and
"previousWorkflowStep -> proposedEvent" objects in the workflow step that the lender has sent through.

The borrower can then decide whether they are happy with the new terms in the counter
proposal. In this scenario the borrower is happy with the new terms suggested by the lender
and so will accept them.

To let the lender know that they are happy with the new terms, the borrower application
must send a message back to the lender informing them. The way that this should be done is
by generating another workflow step with the exact same details in the “proposedEvent”
object as the lender sent through. The “approval” status for the borrower should also now be
set to “true”.

The borrower application can use the “Create_ProposedWorkflowStep” function to create
the new workflow step, passing through the exact same details as on the counter proposal
they received from the lender. The one object that would need to be updated in the new
workflow step is the “previousWorkflowStep” which should be updated to hold the
“WorkflowStep” that held the lender counter proposal.

As a side note, if the borrower did not agree the new terms proposed by the lender, then
they can generate a counter proposal themselves and send this back to the lender. To do this
they would perform the same as Step 2 in this process again i.e. generate a new
“WorkflowStep” with a “proposedEvent” object holding the updated terms in it, increment
the “version” number and update the “approval” object accordingly.

11.4 Step 4 – Lender accepts the proposal
The lender application will receive the new “WorkflowStep” object from the borrower. The
application will recognise the “identifier” and so will know it is a new step in an existing
negotiation.

Common Domain Model – A Framework for Event Negotiation Page 31 of 37

In addition the “version” number will be the same as the lender set it to when they sent out
the counter proposal, allowing them to deduce that this is not a counter proposal, but will
either be a rejection or an acceptance of their counter proposal.

As the “rejected” attribute will not be set, the lender can tell that this is an acceptance of the
terms that they proposed in their counter proposal. The lender application can further
confirm this by checking that the contents of “proposedEvent” and “previousWorkflowStep -
> proposedEvent” in the “WorkflowStep” object are identical (the application can also check
the “proposedEvent” against the details that it holds internally for the original workflow step
that it sent out to the borrower).

Once the lender application is satisfied that the borrower has accepted the new terms they
can continue to commit the trade, and notify the borrower. They can do this by generating a
new workflow step that holds a “businessEvent” object. This can be done by using the
“Create_AcceptedWorkflowStepFromInstruction” function in the CDM.

The process to generate the “businessEvent” is the same as described in the Step 2 from the
“Propose – Accept” scenario described previously.

11.5 Step 5 – Borrower receives the business event
Having sent back their acceptance of the counter proposal made by the lender, the borrower
will be waiting for confirmation back from the lender that the trade has been executed. The
“WorkflowStep” that they now receive from the lender will hold a “businessEvent” object, so
the borrower will know that the trade has been executed by the lender.

The borrower can now commit the trade on their own system using the details from the
“businessEvent” object in the workflow step that they received.

Common Domain Model – A Framework for Event Negotiation Page 32 of 37

12 Scenario 4 – Propose – Counter – Reject

Even after the borrower and lender have agreed to a trade execution, and have started
deciding the specific terms of the trade, it is still possible that one party may not want to
continue with the trade. In this scenario we consider the situation where a borrower no
longer wants/needs the shares requested and thus wants to stop the negotiation. The
following diagram represents the workflow:

Diagram 28: Overview of the Propose-Counter-Reject workflow

12.1 Step 1 – Borrower creates the initial proposal
To start the negotiation process the borrower will need to create a new “WorkflowStep”
object with the details of the trade execution in the “proposedEvent” object within it. This
can be done using the “Create_ProposedWorkflowStep” function in the CDM.

The details on how to do this are the same as can be found in the section of the same name
under the “Propose – Accept” scenario.

12.2 Step 2 – Lender offers a counter proposal
The lender will receive the “WorkflowStep” object created by the borrower, but decides that
they want to negotiate some of the terms within the proposal. They thus build a counter
proposal that they send back to the borrower.

The details on how the lender can create a counter proposal can be found in the section of
the same name under the “Propose – Counter – Accept” scenario.

12.3 Step 3 – Borrower rejects the counter proposal
The borrower will receive the “WorkflowStep” object created by the borrower. This will hold
the counter proposal being made by the lender.

Common Domain Model – A Framework for Event Negotiation Page 33 of 37

If after checking the terms described in the “proposedEvent” the borrower does not want to
continue with the trade, or no longer wants to continue with the trade for any other reason,
then the borrower will need to reject the proposal.

To reject the event the borrower application will need to generate a rejected workflow step
and pass this back to the borrower. This can be done by using the
“Create_RejectedWorkflowStep” function in the CDM.

The details on how the borrower can create a rejected workflow step can be found in the
section “Step 2 – Lender rejects the proposal” under the “Propose – Reject” scenario. The
fact that this is the borrower rejecting the trade execution is not important, the process to
create the rejection is the same.

12.4 Step 4 – Lender receives the rejected proposal
When the lender receives the new workflow step back from the borrower they will see that
the “rejected” attribute is set to “true”. The lender will know from this setting that the
borrower does not wish to continue with the negotiation of this event. No further action will
be taken with this trade execution.

Common Domain Model – A Framework for Event Negotiation Page 34 of 37

13 Best practices for bilateral trade negotiations

The flexibility and reusability of objects in the model is one of the greatest strengths of the
CDM. This makes the definition of best practices and frameworks as described in this
document fundamental to the consistent usage of the model throughout the industry.

To support the workflows outlined in this document a few best practices need to be
observed by any parties wishing to implement the framework.

1. No further actions are allowed on a rejected proposal
When a party rejects a proposal then they are stating that they do not want to continue with
this trade request at all. Applications need to also ensure that any further steps received with
the rejected “eventIdentifier -> assignedIdentifier -> identifier” are ignored and preferably
generate an error.

2. Both sides need to approve a proposal
If the borrower is happy with a proposal or counter proposal then they can generate a
“proposedEvent” and set their “approval” status to true. Once the lender is happy with a
proposal or counter they can generate a “businessEvent” and set their “approval” status to
true.

Only once both parties have approved a proposal or a counter will it be created as a
“businessEvent” by the lender. The lender always has the "last look" (see later point) so they
will always be the last party to approve an event.

3. Sending a counter proposal
The original “proposedEvent” will be put into “previousWorkflowStep” for lineage and
application validation purposes. A new “proposedEvent” object will be created that will hold
the new details, which will be the same as the original “proposedEvent” with any updated
terms.

The “eventIdentifier -> assignedIdentifer -> identifier” will remain the same to allow all steps
for this proposed trade execution to be cross referenced. However, the “eventIdentifier ->
assignedIdentifier -> version” will be incremented by +1, setting this as an update to the
original proposal i.e. a counter proposal.

The party sending the counter proposal should set their “approval” status to true. They must
set the “approval” status for the other party to false.

4. The Lender always has the “last look”
The borrower will always wait for a "businessEvent" from the lender before creating the trade
in their application. This means that the borrower will thus only ever generate
"proposedEvent" objects for either proposals or counters.

The lender can generate "proposedEvent" objects for proposals and counters, but will only
ever generate "businessEvent" objects when both parties have approved the event.

Common Domain Model – A Framework for Event Negotiation Page 35 of 37

14 More complex negotiations

The scenarios described above are the most common scenarios that would be found during a
bilateral trade execution. The framework we have described can also be used for more
complex trade negotiations, other trade lifecycle events, or for multi-party negotiations.

It is possible, and in fact highly likely, that a trade negotiation could consist of many counter
proposals. In this document we have shown a trade execution with a single counter proposal.
The same counter proposal workflow could be used many times on a single negotiation
though, allowing several trade terms to be agreed over several iterations of the proposed
event details.

We have also assumed that the borrower will be initiating the negotiation. In our examples
the borrower has already decided the lender that they want to fulfil the trade. This workflow
could be started by the lender as well, where the lender is offering a number of shares at a
particular rate to the borrower (or a group of borrowers).

In the same vein, where a borrower is sending out a prospective request to multiple lenders,
the borrower could send out the message with the “approval” object not set. This would
allow a lender to send back a proposed trade execution with the terms that they would find
acceptable. This could be for the full quantity of shares requested by the borrower, or a
proportion of them. The borrower could then decide which lender(s) they would like to fulfil
the trade and send out proposed events to their selected/preferred lenders. This would
facilitate peer to peer auto-borrowing of securities between the borrower and a single or
many lenders.

We have focused on bilateral trade executions here, but the workflows described could
equally well be used where there are multiple parties on the trade. An example of this would
be where the trade execution was for a block trade and the lender had to disclose the funds
allocated to the trade to the borrower.

When there are multiple parties on an event then there are a few additional considerations.
For example, when a counter proposal is made then the “version” number is incremented in
the message that is sent back to the requesting party. If multiple parties come back with
counter proposals then the initiating party could receive multiple messages each with the
same (or different) version numbers, and each with the same (or different) terms.

To overcome this potential issue with sequencing, specific rules/best practices can be put in
place. One way to manage this would be for only the initiating party to handle the version
number and approval status of the negotiation. For example, if the initiating party is party1
and they get a message back from party2 that has “version” set to 2, and a message back
from party3 that has “version” set to 3, then they should respond with a message “version”
set to 4 i.e. the next highest number in the version sequence. If party2 and party3 are happy
with the contents of the new event then they will respond with a new message also setting
“version” to 4; thus allowing party1 to recognise that the terms of the event have been
accepted.

There are also potential issues here with retaining the lineage of the negotiation. Once again,
one answer could be to ensure that only the initiating party updates the
“previousWorkflowStep” object with the lineage as they see it.

Common Domain Model – A Framework for Event Negotiation Page 36 of 37

As can hopefully be seen from the suggestions above there are a lot of different use cases for
this framework. All that would be required to support some of these would be agreement
between the parties on the best practices they want to employ for their negotiations – these
can then be promoted throughout the industry for use by all participants.

Common Domain Model – A Framework for Event Negotiation Page 37 of 37

15 Summary

The workflow processing built into the CDM gives us a framework that can be used for
parties to propose, accept, counter and reject business events during a trade’s lifecycle. The
objects in the model can hold all the terms required for an event, and there are functions
available that support the transition of an event through the workflow steps.

The model is flexible by design, allowing event data to be supported at various levels of
granularity, the level required being defined by the applications that use the CDM and not
the model itself. This flexibility means that best practices and guidelines like the suggestions
in this document are critical when determining how a specific event should be negotiated. As
more participants start to use frameworks like these, then the closer the industry will move to
deciding upon standards for specific event negotiations.

As the CDM is a model, and not an application, there is still some work that needs to be
undertaken by any application that wants to use these workflows. Performing basic validation
checks and preserving lineage are two aspects of the negotiation process that the CDM
would rely upon an application to perform.

Hopefully this document has served to generate some interest in how the CDM can be used
to model event negotiation. We’ve shown some of the objects and functions that are already
available in the model, and how to use them for a possible use case. Suggestions for new use
cases and the objects and/or functions that would be required to support them are always
welcomed by the CDM community.

The CDM is an Open Source model hosted by FINOS. If you would like to become part of the
community then please go to the FINOS website and help us shape the standards of the
future!

16 Thanks

Modelling diagrams and code snippets all taken from the Rosetta application kindly provided
by REGnosys.

The framework itself was derived from the ISLA Trading Working Group, at the time
consisting of representatives from the following member firms: Broadridge, FIS, GLMX,
Pirum, REGnosys, TradingApps, ShareGain, Wematch.live

Special thanks to Mike Lambert from Broadridge for the workflow diagrams, and Rob Miles
from GLMX for the JSON examples.

